|
Title: | Distributed leader-follower formation control for autonomous vessels
based on model predictive control | | Authors: | M. van Pampus, A. Haseltalab, V. Garofano, V. Reppa, Y. Deinema, R.R. Negenborn |
| Conference: | 2021 European Control Conference (ECC'21) | Address: | Rotterdam, The Netherlands | Date: | June/July 2021 |
| Abstract: | Formation control of autonomous surface vessels (ASVs) has been studied extensively over the last few years since it offers promising advantages. In this paper, two control methods for distributed leader-follower formation control are proposed: A Nonlinear Model Predictive Control (MPC) method and an MPC method using Feedback Linearization. One agent per vessel performs planning and control. The agents exchange information on their current and predicted positions. The two proposed methods are compared with each other and also with a conventional Proportional-Integral (PI) control method. The performance of the proposed strategies is evaluated through simulations and field experiments using small scale vessels. The simulation and field experiment results show that the proposed MPC-based approaches outperform the conventional PI control method. |
| Reference: | Distributed leader-follower formation control for autonomous vessels
based on model predictive control. M. van Pampus, A. Haseltalab, V. Garofano, V. Reppa, Y. Deinema, R.R. Negenborn. Accepted for the 2021 European Control Conference (ECC'21), Rotterdam, The Netherlands, June/July 2021. | | Request: | A
copy of this publication. |
|
|